Online training class for Clinical R programming batch starts on Monday, 02Feb2026.
Click here for details.
#==============================================================================;
#Retain previous non-missing low score;
#==============================================================================;
pmin <- tribble(
~usubjid,~visitnum,~score,
101,1,20,
101,2,NA,
101,3,30,
102,1,90,
102,2,10,
102,3,NA,
102,4,91,
102,5,NA
)
pmin01 <- pmin %>%
arrange(usubjid,visitnum) %>%
group_by(usubjid) %>%
mutate(
orig_score = score,
temp_score = if_else(is.na(score),Inf,score),
minscore=cummin(temp_score),
score = if_else(is.na(score),minscore,score)
) pmin <- data.frame(
usubjid = c(101, 101, 101, 102, 102, 102, 102, 102),
visitnum = c(1, 2, 3, 1, 2, 3, 4, 5),
score = c(20, NA, 30, 90, 10, NA, 91, NA)
, stringsAsFactors = FALSE
)
pmin01 <- pmin[order(pmin$usubjid, pmin$visitnum), ]
pmin01$orig_score <- pmin01$score
pmin01$minscore <- ave(pmin01$score, pmin01$usubjid, FUN = function(x) {
temp <- ifelse(is.na(x), Inf, x)
cummin(temp)
})
pmin01$score <- ifelse(is.na(pmin01$orig_score), pmin01$minscore, pmin01$score)