Online training class for Clinical R programming batch starts on Monday, 02Feb2026.
Click here for details.
df <- tibble(
id = 1:4,
name = c("Alice", NA, "Charlie", NA),
age = c(25, 30, NA, NA),
score = c(85, 90, 88, NA)
)
df2 <- df %>% mutate(cmiss_subset = rowSums(is.na(across(c(name, score))))) df <- data.frame(
id = 1:4,
name = c("Alice", NA, "Charlie", NA),
age = c(25, 30, NA, NA),
score = c(85, 90, 88, NA)
, stringsAsFactors = FALSE
)
df2 <- df
df2$cmiss_subset <- rowSums(is.na(df2[, c("name", "score")]))